Realization ofU q (so(N)) within the differential algebra onR q N

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Masses of Decuplet Baryons Treated within Anyonic Realization of the Q-algebras U Q (su N )

In the approach to hadronic flavour symmetries based on the q-algebras U q (su N) and proved to be realistic, the known construction of U q (su N) in terms of anyonic oscillators residing on 2d lattice is utilized. Anyonic Fock-like realization of basis state vectors is given for baryons (3/2) + from the 10-plet of U q (su 3) embedded, via 20-plet of U q (su 4), into the " dynamical " represent...

متن کامل

Classification theorem on irreducible representations of the q-deformed algebra U′q(son)

The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandard q-deformation U ′ q(son) (which does not coincide with the Drinfel’d-Jimbo quantum algebra Uq(son)) of the universal enveloping algebra U(son(C)) of the Lie algebra son(C) when q is not a root of unity. These representations are exhausted by irreducible representations...

متن کامل

CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS OF THE q-DEFORMED ALGEBRA U ′ q(son)

A classification of finite dimensional irreducible representations of the nonstandard q-deformation U ′ q (so n) of the universal enveloping algebra U (so(n, C)) of the Lie algebra so(n, C) (which does not coincides with the Drinfeld–Jimbo quantized universal enveloping algebra U q (so n)) is given for the case when q is not a root of unity. It is shown that such representations are exhausted b...

متن کامل

The (Q, q)–Schur Algebra

In this paper we use the Hecke algebra of type B to define a new algebra S which is an analogue of the q–Schur algebra. We construct Weyl modules for S and obtain, as factor modules, a family of irreducible S–modules over any field.

متن کامل

Representations and Q-Boson Realization of The Algebra of Functions on The Quantum Group GLq(n)

We present a detailed study of the representations of the algebra of functions on the quantum group GLq(n). A q-analouge of the root system is constructed for this algebra which is then used to determine explicit matrix representations of the generators of this algebra. At the end a q-boson realization of the generators of GLq(n) is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 1995

ISSN: 0010-3616,1432-0916

DOI: 10.1007/bf02099309